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Flag Algebras first try - Density approach, less formal

Flag algebras is a framework to study optimization problems over discrete structures. It is closely related to
graph limits. It was introduced by Razborov in a paper from 2007. The framework can be applied to graphs,
hypergraphs, oriented graphs, permutations, crossing numbers and many others. Today, we will focus only on
graphs and we try to do more intuitive and less formal approach. More formal version will be next time.

In practice, flag algebras are useful for solving optimization problems, where both constraints and an objective
function can be expressed by considering small subgraphs. For example Mantel’s theorem:

max{|E(G)| : G is a K3-free graph on n vertices}.

The flag algebra results applies to limits and/or large graphs.

1: How to formulate the problem of maximizing the number of edges in triangle-free graphs as a limit
problem? (i.e. |V (G)| → ∞)

Solution:

lim
n→∞

max

{
|E(G)|/

(
n

2

)
: G is a K3-free on n vertices

}
2: How can you get (lower) bounds on the limit problem above?

Solution: Find a good construction. In the example above, the complete bipartite
graph will give a graph, where |E(G)|/

(
n
2

)
tends to 1/2. So we get a lower bound of

1/2.

Flag algebras may help with the upper bound (but if lucky, it may help with the construction too).

Basic notation is for randomly picking a subgraph. For a graph G, we denote the number of vertices of G by
v(G).

Definition: P (H,G) is the probability that a set X of v(H) vertices from V (G) picked uniformly at random
induces a copy of H.
In other words, pick v(H) vertices from V (G) randomly, denote the vertices X. P (H,G) is the probability that
G[X] is isomorphic to H.
Of course, v(G) ≥ v(H).

Notice that |E(G)|/
(
n
2

)
is the same as P (K2, G).

P (H,G) =
# of induced copies of H in G(v(G)

v(H)

)

In drawings, is an edge and is a non-edge.

3: Calculate

P

(
,

)
=

1

2
P

(
,

)
= 1
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4: Let G be a graph on at least 3 vertices. Calculate

P

(
, G

)
+ P

(
, G

)
+ P

(
, G

)
+ P

(
, G

)
= 1

Solution: Since the sum contains ALL possible graphs on 3 vertices, the above events
are disjoint and exactly one always happens.

Our plan is to come up with similar equations as the one above. That is, expressions with small graphs that
hold for ANY large graph G.

5: Find coefficients a, b, c, d independent of G such that the following equation is valid for any G.

P

(
, G

)
= a · P

(
, G

)
+ b · P

(
, G

)
+ c · P

(
, G

)
+ d · P

(
, G

)
. (1)

Solution: The coefficients are P (K2, H). Think of the experiment as on the left hand
side, pick randomly two vertices. On the right hand side, pick randomly three vertices
and then pick two from these three.

P

(
, G

)
= 0 · P

(
, G
)

+
1

3
· P
(

, G
)

+
2

3
· P
(

, G
)

+ 1 · P
(

, G
)

6: Let H be a graph, where v(H) = k ≤ `. How to find cHF in general such that

P (H,G) =
∑

F,v(F )=`

cHF · P (F,G) .

Solution:
cHF = P (H,F )

Notice that in the previous question(s), we always write P (?, G). It is somewhat inefficient writeup. So we now
DROP all but ? from the notation and write just

= a · + b · + c · + d · .

with the understanding, that every graph H in the expression actually means P (H,G).

Our goal now is to give a slightly incorrect (in our notation) proof of Mantel’s theorem.

7: Statement of Mantel’s theorem is that if G is triangle free then

≤ 1

2
+ o(1).

8: If G is triangle free, then

= 0.
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9: Suppose that the following inequality is true for ANY G

0 ≤ 3 · − − + 3 · . (2)

This inequality is not quite true with the notation we have so far (Why?) but it will be true eventually for limits
of large G. Can you combine it with the previous equations and inequalities to show the Mantel’s theorem?

Solution: We use

1 = + +

0 ≤ 3 · − −

Now

3 · 2 · = 0 · + 2 · + 4 · ≤ 3 + 1 + 3

= 3
(

+ +
)
− 2 ≤ 3

Now the question is, how to come up with inequalities like (2)? We will try to do it by using things like
0 ≤ (F1 − F2)

2, which is true for any F1 and F2. To do so, we need to be able to somehow evaluate F1 · F2.
Recall it means P (F1, G) · P (F2, G). A key observation will be that if G is large, then insisting F1 and F2 are
disjoint in P (F1, G) · P (F2, G) does not change the value too much.

Definition: P (F1, F2;G), where F1,F2 and G are graphs with v(G) ≥ v(F1) + v(F2). Let X1 and X2 be two
disjoint subsets of V (G) of sizes v(F1) and v(F2) picked uniformly at random. The probability that G[X1] is
isomorphic to F1 and G[X2] is isomorphic to F2 is denoted by P (F1, F2;G).

Notice that the definition of P (F1, F2;G) could be extended to P (F1, . . . , Fk;G).

10: Calculate

P

(
, ;

)
=

2

30
P

(
, ;

)
=

10

30

11: Suppose G is a very large n-vertex graph compared to F1 and F2, where v(F1) = v(F2) = ` and ` is
considered to be constant. Show that

|P (F1, G) · P (F2, G)− P (F1, F2;G)| = O(n−1).

Solution: Intuitively, in the product, if we pick randomly two `-element subsets from
an n-element set, where n >> `, we expect the two sets to be disjoint, so it is the
same as P (F1, F2;G). A little more formally. Let X1 and X2 be two subsets of V (G)
of size ` chosen uniformly at random independent of each other. Let A be the event
that G[X1] ∼= F1 and G[X2] ∼= F2 and let B be the event that X1 and X2 are disjoint.
Then

P (F1, G) · P (F2, G) = P (A) P (F1, F2;G) = P (A|B).

cbna

https://creativecommons.org/licenses/by-nc-sa/4.0/


Math 608 Lidický:1 4/7

Now

|P (A)− P (A|B)| ≤ 1− P (B) ≤ P (X1 ∩X2 6= ∅) ≤
`
(
n−1
`−1

)(
n
`

) =
l2

n
= O(n−1)

The first inequality follows from the following to cases:

P (A)− P (A|B) ≤ P (A)− P (A ∧B) · P (B)−1 ≤ P (A ∧B) + P (A ∧ ¬B)− P (A ∧B)

= P (A ∧ ¬B) ≤ P (¬B) = 1− P (B)

P (A|B)− P (A) ≤ P (A|B)− P (A ∧B)− P (A ∧ ¬B)

= P (A|B)− P (A|B)P (B)− P (A ∧ ¬B) ≤ P (A|B)(1− P (B)) ≤ 1− P (B)

12: Show that
P (F1, F2;G) =

∑
H,v(H)=2`

P (F1, F2;H) · P (H,G)

Solution: Law of total probability.

So now we have developed some kind of product that works as follow

P (F1, G) · P (F2, G) = P (F1, F2;G) + o(1) = o(1) +
∑

H,v(H)=2`

P (F1, F2;H) · P (H,G)

In our more compact notation, it can be written as

F1 · F2 =
∑

H,v(H)=2`

P (F1, F2;H) ·H + o(1)

We will also drop o(1) in the expression that follow. But you should keep in mind that it is there. For example,
(2) should contain o(1) in the notation that we are currently using.

13: Fill in the missing coefficients in .

· =
0

6
· +

1

6
· +

2

6
· +

3

6
· +

3

6
· +

0

6
·

+
1

6
· +

2

6
· +

0

6
· +

1

6
· +

0

6
·

Next we introduce a concept that makes it easier to generate more inequalities like (2). Let σ be a (small)
graph with vertices labeled by 1, . . . , v(σ). This will be called type. Next everything we were doing so far, we
can do again but EVERY graph we use must have a fixed labeled copy of σ and these copies must be mapped to
each other when considering isomorphism. If we were picking something at random, pick only among unlabeled
vertices and keep the labeled ones. Or alternatively the random pick must always contain the labeled vertices.
We will denote the labeled vertices by squares .
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14: What does
11

mean if we use it as P


11

, G

, where G also has one vertex labeled by 1?

Solution: Suppose G has n vertices. The labeled vertex gets mapped to the labeled
vertex and then the unlabeled vertex is randomly chosen from the remaining n − 1
unlabeled vertices in G. This corresponds to the degree of the labeled vertex divided
by n− 1.

15: Calculate

P


11

,
1

 =
1

2
P


11

,
1

 =
1

4

Now we try to do product but instead of doing

P (F1, G) · P (F2, G) = P (F1, F2;G) =
∑

H,v(H)=2`

P (F1, F2;H) · P (H,G),

we try to do it differently. Let’s do in on an example.

11
·
11

=
?

1
=

1
+

1

The first entry means pick randomly two (unlabeled) vertices with repetition and check that both are adjacent
to the labeled vertex. The second asks pick randomly two distinct vertices and check that they are both adjacent
to the labeled vertex; it does not matter how they are adjacent to each other.

16: If we try to multiply an edge and a non-edge, a extra factor 1
2 has to be used. Why?

11
·
11

=
1

2

?

1
=

1

2

(
1

+
1

)

Solution: In the product on the left, we distinguish the first and the second choice
but we do not do the distinction on the right. But it is a particular case. Best is always
calculate P (F1, F2;H) and use ? edges to generate the graphs H.

The above is to give some idea how the product might look like. Finally, the labeled graphs help with creating
labeled equations. However, we are usually interested in unlabeled equations rather than labeled ones.

Lets try to do some small examples

17: To make the notation in the sum more clear, assume that the label vertex is v. Show that

1

3
=

1

n

∑
v∈V (G)

v
and =

1

n

∑
v∈V (G)

v

Solution: Just counting the number of P 3 and K3 in G.(
n

3

)
=
∑

v∈V (G)
v

(
n− 1

2

)
3

(
n

3

)
=
∑

v∈V (G)
v

(
n− 1

2

)
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The operation above is called averaging or unlabeling. We will be more specific about the unlabeling next time.

18: Prove again Mantel’s theorem by using (1) and expanding and averaging the following

0 ≤

1− 2
11

2

.

Solution:

0 ≤ 1

n

∑
1

(
1− 2

11

)2

=
1

n

∑
1

(
1− 4

11
+ 4

1
+ 4

1

)

= 1− 4 +
4

3
+ 4 = 1− 4 +

4

3

By multiplying (1) by 2, we get

−2 · = −2

3
− 4

3

and continue the main calculation as

0 ≤ 1− 4 +
4

3
= 1− 2 − 2

3
≤ 1− 2

Hence ≤ 1
2 .

Finally we show how the calculations for Mantel’s theorem give some information about the extremal example.

19: Suppose that = 1
2 . Can you use any of the two previous calculations for ≤ 1

2 to show that = 0?

Solution: It is enough to use = 1
2 in

0 ≤ 1− 2 − 2

3
= −2

3

or

3 = 3 · 2 · = 3
(

+ +
)
− 2 = 3− 2

20: Suppose that a graph G does not contain , and = 1
2 . Can you show it is a complete

bipartite graph?

Solution: Take any edge. Every other vertex has exactly one neighbor and one
non-neighbor on this edge. This creates a partition of all vertices into two sets. Try to
look at the edges that remaining pairs and the forbidden triangles give that it must be
a complete bipartite. Balancing is also possible.
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Notice that flag algebras calculations above do not actually give that the extremal example is -free.

Remember, there was o(1) error in multiplication. The actual correct statement is that for every ε > 0, there

exists n0 such that every extremal graph on n ≥ n0 satisfies ε > . Then there exists the following lemma,

that makes the above valid up to εn2 edges.

Lemma 1 (Infinite Removal Lemma, Alon and Shapira 2008). For any (possibly infinite) family H of graphs
and ε > 0, there exists δ > 0 such that if a graph G on n vertices contains at most δnv(H) induced copies of
H for every graph H in H, then it is possible to make G induced H-free, for every H ∈ H, by adding and/or
deleting at most εn2 edges.
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